Orthogonal frequency division multiple access (OFDMA):

Mobile WiMAX uses OFDM as a multiple-access technique, whereby different users can be allocated different subsets of the OFDM tones. As discussed in detail in Chapter 6, OFDMA facilitates the exploitation of frequency diversity and multiuser diversity to significantly improve the system capacity.

Flexible and dynamic per user resource allocation: Both uplink and downlink resource allocation are controlled by a scheduler in the base station. Capacity is shared among multiple users on a demand basis, using a burst TDM scheme. When using the OFDMA-PHY mode, multiplexing is additionally done in the frequency dimension, by allocating different subsets of OFDM subcarriers to different users.

Resources may be allocated in the spatial domain as well when using the optional advanced antenna systems (AAS). The standard allows for bandwidth resources to be allocated in time, frequency, and space and has a flexible mechanism to convey the resource allocation information on a frame-by-frame basis.

Support for advanced antenna techniques:

The WiMAX solution has a number of hooks built into the physical-layer design, which allows for the use of multiple-antenna techniques, such as beamforming, space-time coding, and spatial multiplexing. These schemes can be used to improve the overall system capacity and spectral efficiency by deploying multiple antennas at the transmitter and/or the receiver. Chapter 5 presents detailed overview of the various multiple antenna techniques.

Quality-of-service support:

The WiMAX MAC layer has a connection-oriented architecture that is designed to support a variety of applications, including voice and multimedia services. The system offers support for constant bit rate, variable bit rate, real-time, and non-real-time traffic flows, in addition to best-effort data traffic. WiMAX MAC is designed to support a large number of users, with multiple connections per terminal, each with its own QoS requirement.

Robust security:

WiMAX supports strong encryption, using Advanced Encryption Standard (AES), and has a robust privacy and key-management protocol. The system also offers very flexible authentication architecture based on Extensible Authentication Protocol (EAP), which allows for a variety of user credentials, including username/password, digital certificates, and smart cards.

Support for mobility:

The mobile WiMAX variant of the system has mechanisms to support secure seamless handovers for delay-tolerant full-mobility applications, such as VoIP. The system also has built-in support for power-saving mechanisms that extend the battery life of handheld subscriber devices. Physical-layer enhancements, such as more frequent channel estimation, uplink subchannelization, and power control, are also specified in support of mobile applications.

IP-based architecture:

The WiMAX Forum has defined a reference network architecture that is based on an all-IP platform. All end-to-end services are delivered over an IP architecture relying on IP-based protocols for end-to-end transport, QoS, session management, security, and mobility. Reliance on IP allows WiMAX to ride the declining costcurves of IP processing, facilitate easy convergence with other networks, and exploit the rich ecosystem for application development that exists for IP.